(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "Scientific Papers - Vi"

230      SOME  CALCULATIONS IN ILLUSTRATION  OF FOURIER'S THEOREM     [382
When ^ = 10,     <f>(x) = Si(10# + 10) - Si(l(k - 10)................(8)
We find
k = 10.
X	*()	X	<t>(x)	X	4>(x)
o-o	+ 3-3167	1-7	+ 0-1257	3-4	-0-0067
o-i	3-2433	1-8	+ 0-0305	3-5	+ 0-0272
0-2	3-0792	1-9	-0-0677	3-6	+ 0-0349
0-3	2-9540	2-0	-0-0916	3-7	+ 0-0115
0-4	2-9809    '	2-1	-0-0365	3-8	-0-0203
0-5	3-1681    !	2-2	+ 0-0393	3-9	-0-0322
0-6	3-3895	2-3	+ 0-0709	4'0	-0-0151
0-7	3-4388    :	2-4	+ 0-0390	4-1	+ 0-0142
0-8	3-1420	2-5	-0-0213	4'2	+ 0-0293
0-9	2-4647	2-6	-0-0562	4-3	+0-0178
1-0	1-5482	2-7	-0-0415	4-4	-0-0089
1-1	0-6488    .	2-8	+ 0-0089	4-5	-0-0262
1-2	+0-0107	2-9	+ 0-0447	4-6	-0-0194
1-3	-0-2532	3-0	+ 0-0387	4-7	+ 0-0063
1-4	-0-2035	3-1	+ 0-0000	4-8	+ 0-0230
1-5	-0-0184	3-2	-0-0353	4-9	+ 0-0203
1-6	+0-1202	3-3	-0-0371	5-0	-0-0002
 5
The same set of values of Si up to Si (60) would serve also for the calculation of < (a?) for ^ = 20 and from as - 0 to as = 2 at intervals of O'Oo. It is hardly necessary to set this out in detail.7947	1-4	0-8179	5-5	-0-1657